3.4 \(\int \frac {\tan (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx\)

Optimal. Leaf size=349 \[ \frac {\sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+a-c} \tanh ^{-1}\left (\frac {-\sqrt {a^2-2 a c+b^2+c^2}+a+b \cot (d+e x)-c}{\sqrt {2} \sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+a-c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt {a^2-2 a c+b^2+c^2}}-\frac {\sqrt {\sqrt {a^2-2 a c+b^2+c^2}+a-c} \tanh ^{-1}\left (\frac {\sqrt {a^2-2 a c+b^2+c^2}+a+b \cot (d+e x)-c}{\sqrt {2} \sqrt {\sqrt {a^2-2 a c+b^2+c^2}+a-c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt {a^2-2 a c+b^2+c^2}}+\frac {\tanh ^{-1}\left (\frac {2 a+b \cot (d+e x)}{2 \sqrt {a} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {a} e} \]

[Out]

arctanh(1/2*(2*a+b*cot(e*x+d))/a^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2))/e/a^(1/2)+1/2*arctanh(1/2*(a-c+b
*cot(e*x+d)-(a^2-2*a*c+b^2+c^2)^(1/2))*2^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/(a-c-(a^2-2*a*c+b^2+c^2)^
(1/2))^(1/2))*(a-c-(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/e*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/2)-1/2*arctanh(1/2*(a-c+b
*cot(e*x+d)+(a^2-2*a*c+b^2+c^2)^(1/2))*2^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/(a-c+(a^2-2*a*c+b^2+c^2)^
(1/2))^(1/2))*(a-c+(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/e*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.69, antiderivative size = 349, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3701, 6725, 724, 206, 1036, 1030, 208} \[ \frac {\sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+a-c} \tanh ^{-1}\left (\frac {-\sqrt {a^2-2 a c+b^2+c^2}+a+b \cot (d+e x)-c}{\sqrt {2} \sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+a-c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt {a^2-2 a c+b^2+c^2}}-\frac {\sqrt {\sqrt {a^2-2 a c+b^2+c^2}+a-c} \tanh ^{-1}\left (\frac {\sqrt {a^2-2 a c+b^2+c^2}+a+b \cot (d+e x)-c}{\sqrt {2} \sqrt {\sqrt {a^2-2 a c+b^2+c^2}+a-c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt {a^2-2 a c+b^2+c^2}}+\frac {\tanh ^{-1}\left (\frac {2 a+b \cot (d+e x)}{2 \sqrt {a} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {a} e} \]

Antiderivative was successfully verified.

[In]

Int[Tan[d + e*x]/Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]

[Out]

ArcTanh[(2*a + b*Cot[d + e*x])/(2*Sqrt[a]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])]/(Sqrt[a]*e) + (Sqrt[a
- c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*ArcTanh[(a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2] + b*Cot[d + e*x])/(Sqrt[2]
*Sqrt[a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(Sqrt[2]*Sqrt[a^2
+ b^2 - 2*a*c + c^2]*e) - (Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*ArcTanh[(a - c + Sqrt[a^2 + b^2 - 2*a*c
 + c^2] + b*Cot[d + e*x])/(Sqrt[2]*Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Cot[d + e*x] + c*Cot
[d + e*x]^2])])/(Sqrt[2]*Sqrt[a^2 + b^2 - 2*a*c + c^2]*e)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1030

Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*
a*g*h, Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; F
reeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]

Rule 1036

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Dist[1/(2*q), Int[Simp[-(a*h*e) - g*(c*d - a*f - q) + (h*(c*d - a*f + q) -
 g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist[1/(2*q), Int[Simp[-(a*h*e) - g*(c*d - a*f + q
) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g,
 h}, x] && NeQ[e^2 - 4*d*f, 0] && NegQ[-(a*c)]

Rule 3701

Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> -Dist[f/e, Subst[Int[((x/f)^m*(a + b*x^n + c*x^(2*n))^p)/(f^2 + x^
2), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\tan (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx &=-\frac {\operatorname {Subst}\left (\int \frac {1}{x \left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {\operatorname {Subst}\left (\int \left (\frac {1}{x \sqrt {a+b x+c x^2}}-\frac {x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}}\right ) \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{e}+\frac {\operatorname {Subst}\left (\int \frac {x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{e}\\ &=\frac {2 \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{e}-\frac {\operatorname {Subst}\left (\int \frac {-b+\left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{2 \sqrt {a^2+b^2-2 a c+c^2} e}+\frac {\operatorname {Subst}\left (\int \frac {-b+\left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{2 \sqrt {a^2+b^2-2 a c+c^2} e}\\ &=\frac {\tanh ^{-1}\left (\frac {2 a+b \cot (d+e x)}{2 \sqrt {a} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {a} e}-\frac {\left (b \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-2 b \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )+b x^2} \, dx,x,\frac {a-c-\sqrt {a^2+b^2-2 a c+c^2}+b \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {a^2+b^2-2 a c+c^2} e}+\frac {\left (b \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-2 b \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )+b x^2} \, dx,x,\frac {a-c+\sqrt {a^2+b^2-2 a c+c^2}+b \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {a^2+b^2-2 a c+c^2} e}\\ &=\frac {\tanh ^{-1}\left (\frac {2 a+b \cot (d+e x)}{2 \sqrt {a} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {a} e}+\frac {\sqrt {a-c-\sqrt {a^2+b^2-2 a c+c^2}} \tanh ^{-1}\left (\frac {a-c-\sqrt {a^2+b^2-2 a c+c^2}+b \cot (d+e x)}{\sqrt {2} \sqrt {a-c-\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2+b^2-2 a c+c^2} e}-\frac {\sqrt {a-c+\sqrt {a^2+b^2-2 a c+c^2}} \tanh ^{-1}\left (\frac {a-c+\sqrt {a^2+b^2-2 a c+c^2}+b \cot (d+e x)}{\sqrt {2} \sqrt {a-c+\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2+b^2-2 a c+c^2} e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 35.86, size = 64621, normalized size = 185.16 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[d + e*x]/Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]

[Out]

Result too large to show

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (e x + d\right )}{\sqrt {c \cot \left (e x + d\right )^{2} + b \cot \left (e x + d\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(e*x + d)/sqrt(c*cot(e*x + d)^2 + b*cot(e*x + d) + a), x)

________________________________________________________________________________________

maple [C]  time = 5.49, size = 49657, normalized size = 142.28 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (e x + d\right )}{\sqrt {c \cot \left (e x + d\right )^{2} + b \cot \left (e x + d\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(e*x + d)/sqrt(c*cot(e*x + d)^2 + b*cot(e*x + d) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\mathrm {tan}\left (d+e\,x\right )}{\sqrt {c\,{\mathrm {cot}\left (d+e\,x\right )}^2+b\,\mathrm {cot}\left (d+e\,x\right )+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d + e*x)/(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2),x)

[Out]

int(tan(d + e*x)/(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan {\left (d + e x \right )}}{\sqrt {a + b \cot {\left (d + e x \right )} + c \cot ^{2}{\left (d + e x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)/(a+b*cot(e*x+d)+c*cot(e*x+d)**2)**(1/2),x)

[Out]

Integral(tan(d + e*x)/sqrt(a + b*cot(d + e*x) + c*cot(d + e*x)**2), x)

________________________________________________________________________________________